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Abstract

This paper deals with the study of the radiation effects on the magnetohydrodynamic (MHD) flow of an incompressible viscous fluid
in a porous space. The flow is induced due to a non-linear stretching sheet. Two cases of heat transfer analysis are discussed. These are: (i)
the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case). By means of
similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations.
The resulting non-linear system has been solved analytically using a very efficient technique namely homotopy analysis method (HAM).
Expressions for velocity and temperature fields are developed in series form. Convergence of the series solution is shown explicitly. The
influence of various pertinent parameters is also seen on the velocity and temperature fields. The tabulated values of the wall shear stress

and the Nusselt number show good agreement with the existing results.
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1. Introduction

The flow of a fluid past a stretching surface is encoun-
tered in many technical and industrial applications. Some
of these applications include aerodynamic extrusion of
plastic sheets, the boundary layer along a material handling
conveyers, cooling of an infinite metallic plate in a cooling
bath, the boundary layer along a liquid film in a condensa-
tion process and heat treated material that travel between
feed and wind-up rolls. After the pioneering work of Saki-
adis [1], extensive literature is available on this topic for a
linear stretching sheet. Some very recent contributions in
this direction are made by Sadeghy et al. [2], Ariel et al.
[3], Liao [4], Xu [5] and Cortell [6-8].

In all the above mentioned studies, linear stretching has
been taken into account. The literature on the non-linear
stretching is fairly scarce. Most recently, Cortell [9] dis-
cussed the viscous flow and heat transfer over a non-line-
arly stretching sheet.
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The objective of the present paper is to extend the anal-
ysis of Ref. [9] in four directions (i) to consider a MHD
flow (ii) to analyze the flow in a porous medium (iii) to
include the radiation effects and (iv) to provide analytic
solution to highly non-linear problem. A new developed
powerful technique namely HAM [10,11] has been
employed for the analytic solution. This technique has
already been successfully applied to various problems
[12-32]. Very recently, Allan [33] showed that the Adomian
decomposition method is a special case of the HAM.
Finally, the graphs of velocity and temperature fields are
sketched and variations of sundry parameters are
discussed.

2. Formulation of the problem

Let us consider the steady two-dimensional, incompress-
ible flow of a viscous fluid with heat transfer past a flat sur-
face coinciding with the plane y = 0. The wall is stretched
horizontally by pulling on both sides with equal and oppo-
site forces parallel to the wall keeping the origin fixed. The
fluid is electrically conducting in the presence of a constant
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applied magnetic field By in the y-direction. The induced
magnetic field is neglected using small magnetic Reynolds
number assumption [34,35]. The continuity, momentum
and energy equations under boundary layer approxima-
tions become
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in which « and v are the velocity components in the x- and
y-directions, respectively, p is the fluid density, v is the
kinematic viscosity, o is the electrical conductivity, ¢ is
the porosity, k is the permeability of the porous medium,
T is the temperature, c, is the specific heat, k; is the thermal
conductivity of the fluid and ¢, is the radiative heat flux.

Using the Rosseland approximation for radiation for an
optically thick layer [36] one can obtain

4ot OT*
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where ¢” is the Stefan-Boltzmann constant and k* is the
mean absorption coefficient. We express the term 7* as a
linear function of temperature in a Taylor series about
T.. and neglecting higher terms, therefore we have

T 477 T - 3T . (5)
From Eqgs. (3
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The appropriate boundary conditions are

)—(5) we can write

u,(x) = Cx",

u—0 as

v=0 at y=0, (7)
y — 00, (8)

where C and n are parameters related to the surface stretch-
ing speed.

For temperature we have the following two sets of
boundary conditions.

Case a: Constant surface temperature (CST)

T=T,
T— T

at y =0,
as y — oo.
Case b: Prescribed surface temperature (PST)

T=T,(=Tw+4x") at y=0,

10
T T (10)

as y — 09,

where K is the surface temperature parameter.

Defining the following non-dimensionlized quantities:

Y LA )
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0(n) =

continuity Eq. (1) is satisfied automatically and Eqs. (2)
and (7) become

TW—TOO7
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f0)=0, f(0)=1, f(o0)=0. (13)

The shear stress at the stretched surface is

=iz, 0

which in non-dimensional form becomes
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For temperature with the help of Egs. (6) and (9)—(11)
we get:

Ty = Cu

Case a:  Constant surface temperature (CST)
4
(1 +§Rd) 0" + Prf0 + PrEcf" =0, (16)
0(0)=1, 0(c0)=0 (17)

and the rate of heat transfer of the surface is
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Case b: Prescribed surface temperature (PST)
(1 + iRd) 0"+ Prfo — ( 2K )Prf 0
3 n—+1
+ PrECX" K" = 0. (19)
The above equation for K = 2n reduces to
4 /! / 41’1 / ! 12
l+=R; |0 +PfO0 — | —— |PrfO+PECf"=0
3 n+1
(20)
0(0) =1, 0(cc0)=0. (21)

and the local surface heat flux is

o, dr . 2tn=] 4 , C(n + 1)
4w = —Ar (dy>w = —ApAx (1 + 3Rd>9 (0) P
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Here the local Hartmen number M, the local porosity
parameter A, the Prandtl number Pr, the Eckert number
Ec, the radiation parameter R, and E¢’ are respectively

) 2" 'oB} _ 2" e _ Ky
Cp(n+1)’ Ck(n+1)’ ki’

u? 40°T? c?
E — w R — o] E / E———
Tl -To) T kR Y T 4,

In the next two sections, we will solve the non-linear sys-
tems consisting of Eqgs. (12), (13), (16), (17), (20) and (21)
by HAM.

3. Analytic solution for velocity f(r)

For HAM solution of Egs. (12) and (13), it is straight-
forward to choose the initial approximation

So(n) =1 —exp(—n) (23)
and the auxiliary linear operator

() =1"=1 (24)
with the following property

ZL1[C1 4 Cre" 4+ C3e7" =0, (25)

in which C;, i =1 — 3 are arbitrary constants. If p (€ [01])
and 7%, indicate the embedding and non-zero auxiliary
parameters, respectively then we have:

The zeroth-order deformation problem

(1 =p) &1 |7 (p) = foln)] = iy [F (n: ), (26)
70:p)=0, f1(0p) =1, [(00:p) =0. (27)
The mth-order deformation problem
Lfu(n) =t ()] = IR im(n), (28)
Jn(0) = £,,(0) = f,,(0) =0, (29)
where
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0, m<1,
X’”"l, m> 1. (32)

Now using Mathematics one can solve Egs. (28) and
(29) up to first few order of approximations. The forms
of Egs. (28) and (29) give us the following type of solution

of f,.:

m+1 m+1—n

Sul) =" > al e ™,

n=0 ¢=0

m >0, (33)

where the recurrence formulas for the coefficients af, , of
fm(n) are obtained for m > 1,0 <n<m+1and 0 <k <
m+1—nas
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For the detailed procedure of deriving the above rela-
tions the reader is referred to [11]. Using the above recur-
rence formulas, we can calculate all coefficients f,, using
only the first few

a&o =1, a(l)‘o =0, ag,] =1, (37)

given by the initial guess approximation in Eq. (23).
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The explicit, totally analytic solution is

n = ifmw
11m [Z dp o+ MZH e ( Z mi—" af,ljnnk)] )

4. Analytic solutions for temperature 0(n)

Case a: Constant surface temperature (CST)

To seek the analytic solution of Eqgs. (16) and
(17) using HAM, we take the initial guess
approximation of (1) and auxiliary linear oper-
ator as

Oo(n) = exp(—n), (39)
() =1"—1, (40)
with

$Z[C4e" + Cse’”] = 0, (41)

in which C4 and Cjs are the arbitrary constants. If
%, indicates the non-zero auxiliary parameter
then we get:

The zeroth-order deformation problem
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Using the software Mathematica one can solve Eqs.
(45) and (46) up to first few order of approxima-
tions. We get the following type of solution of 0,,:
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= Z Z b n%e™, m >0, (48)
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The coefficients f,, and ]

. Where m > 1,
0<n<m+1,0<g<m+1—nare

- min{nk+1}
q
k=0 j=max{0,n—m-+k}
min{q,k+1-;}
i q—i
akJ m—1—k.n—j?
i=max{0,g—m+k+n—j}
m—1 min{nk+1}
q
(Sm n § :
k=0 j=max{0,n—m+k}
min{q.k+1-j}
i gq—i
dk]dm 1-k,n—j>
i=max{0,g—m-+k+n—j}

mn (k+ l)bfnTI nbk

m,n’?

gkm,n = (k + 1)/1;]:;1 - nfm,m

Employing the above recurrence formulas, we can
calculate all coefficients b* using only

m,n

bg,o = b(lyo =0, bgl =1, (52)

given by the initial guess approximations in Eq.
(39) and thus the temperature field is
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0 =3 0n(n)
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Case b: Prescribed surface temperature (PST)
Employing the same methodology as in case (a), the
solution here is

9w=2mw
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m=0 n=1 m=n—1 k=0
(54)
where
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Putting I1? = instead of I'?

m,n m,n

in case (a), we can get the

formulas for the coefficients 4%, , for case (b).

5. Convergence of the HAM solution

As pointed out by Liao [10], the convergence and rate of
approximation for the HAM solutions, i.e., the series (38),
(53) and (54) are strongly dependent upon 7%; and 7,. In
order to find the admissible values of 7; and 7,, ii-curves
are plotted for 25th-order of approximations. It is obvious
from Fig. 1 that the range for the admissible values of 7,
and 7, are —1.05 <7; < —0.1 and —1.5 <7, < -0.2. Our
computations show that the series (38), (53) and (54) con-
verge in the whole region of n when 7#; =-0.6 and
h, =—0.8.

6. Results and discussion

This section describes the influence of some interesting
parameters on the velocity and temperature fields. In par-
ticular, attention has been focused to the variations of n,
the Hartman number M, porosity parameter A, Prandtl
number Pr, Eckert number Ec, Ec’, and the radiation
parameter R, on the velocity and temperature fields,
respectively. Moreover, the values of the wall shear stress
—£(0) and the Nusselt number —6'(0) are computed in
the Tables 1-4.

In order to see the effects of n, the Hartman number M
and the porosity parameter A on the velocity component
f, we prepared Figs. 2-4. Fig. 2 depicts the effects of n on
f. Tt shows that the velocity is a decreasing function of .
Figs. 3 and 4 describe the effects of M and A on f', respec-
tively. It is noted that velocity f is an increasing function

of M and A. But this increment, is larger in a porous
medium.
b n=08M=1,A=Fr=E=05 Rs=K=E=02 1 =-05

———  (CST) Case

weseres (PST) Case

T T
.........
~a

-0.75 -05
A2

-15 195 -1

Fig. 1. h-curves for 25th-order approximations.
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n

Cortell [9]

HAM solution

Figs. 5-10 are made for the effects of n, M, A, Pr, Ec and
R, on the temperature field 0 in CST (Constant surface
temperature) case. Fig. 5 shows that 0 increases for large

0.0 0.627547 0.627547 values of n. Figs. 6 and 7 illustrate the effects of M and A
0.2 0.766758 0.766837 on 0. The temperature profile 0 increases as M and A
0.5 0.889477 0.889544 increase, respectively. But this increment in case of M is
0.75 0.953786 0.953956 1 h d with /. Fie. 8 elucid h .
L0 L0 L0 arger when compared with /. Fig. 8 elucidates the varia-
15 1.061587 1.061601 tion of Pr on temperature 0. Itis obseryed that 0 decreasgs
3.0 1.148588 1.148593 as Pr increases. Fig. 9 gives the behavior of Ec on 0. It is
7.0 1.216847 1.216851 noted that 6 has opposite results when compared with
10.0 1.234875 1.234874 Fig. 8. Fig. 10 shows the effects of radiation parameter
200 1.257418 1.257423 R; on 0. It is obvious from Fig. 10 that the temperature
100.0 1276768 1276773 a On . , : & p
0 is an increasing function of R,.
Figs. 11-16 are plotted for the effects of n, M, 1, Pr, E¢
Table 2 and R, on the temperature field 6 in PST (Prescribed sur-
Values of the wall shear stress —f”(0) in the presence of M and 4 face temperature) case. Fig. 11 depicts the effects of 7 on 6.
n M i —/"(0) n M —7"(0) It has the similar results when compared with Fig. 5 in
0.0 0.5 0.5 1052407 15 00 05 1276454  (CST) case. Figs. 12 and 13 show the influence of M and
0.2 1.148901 0.2 1.292071 A on 0, respectively. It is found that these Figs. have the
35 };égggg 8~5 13‘7?12 similar results as in Figs. 6 and 7 for (CST) case. Fig. 14
1‘35 1.32;87 5 1‘3 { 622(1)4511 indicates that 6 is a decreasing function of Pr. But this dec-
15 1371113 20 5373047 ~ rement is larger when compared with Fig. 8. Fig. 15 shows
3.0 1.440650 0.5 00 1.174068  that 0 increases as Ec' increases. Fig. 16 elucidates the
7.0 1.496283 0.2 1.256655 effects of R; on 6. It is noted that 0 is increased when R,
10.0 1.511120 0.5 137113 increases. The change in Fig. 16 is larger when compared
20.0 1.529766 0.7 1.442332 with Fig. 10
100.0 1.545838 1.0 1.542966 g ’
Table 3
Heat transfer characteristics at the wall —60'(0) for CST case when M =1=R;=0
Cortell [9] HAM solution Cortell [9] HAM solution
Ec n Pr=1 Pr=1 Pr=>5 Pr=>5
0.0 0.2 0.610262 0.610217 1.607175 1.607925
0.5 0.595277 0.595201 1.586744 1.586833
L.5 0.574537 0.574729 1.557463 1.557672
3.0 0.564472 0.564661 1.542337 1.542145
10.0 0.554960 0.554878 1.528573 1.528857
0.1 0.2 0.574985 0.574955 1.474764 1.474203
0.5 0.556623 0.556775 1.436789 1.437242
1.5 0.530966 0.530962 1.381861 1.382003
3.0 0.517977 0.518043 1.352768 1.352548
10.0 0.505121 0.505127 1.324772 1.324943
Table 4
Heat transfer characteristics at the wall —0'(0) for PST case when K=2nat M =1=R;=0
Cortell [9] HAM solution Cortell [9] HAM solution
Ed n Pr=1 Pr=1 Pr=5 Pr=5
0.0 0.75 1.252672 1.252700 3.124975 3.124347
1.5 1.439393 1.439375 3.567737 3.567944
7.0 1.699298 1.699318 4.185373 4.185378
10.0 1.728934 1.728952 4.255972 4.255935
0.1 0.75 1.219985 1.219940 3.016983 3.016934
1.5 1.405078 1.405184 3.455721 3.455875
7.0 1.662506 1.662599 4.065722 4.065791
10.0 1.691822 1.691812 4.135296 4.135299
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M=021=02
1 — n=00
== n=05
0.8 - = 1.0
[ X‘\ - n=50
06F
[
04
0.2
0
0 1 2 3 4 5

Fig. 2. Effects of n on /" at i; = —0.6.

n=50,1=05

— M=00
- M=06
- M=08

- M= 10

Fig. 3. Effects of M on /" at 7i; = —0.6.

_ n=50M=05
— =00 .
- 1=08
e A= 12
S A=15
8 10 12

Fig. 4. Effects of A on /" at i; = —0.6.

Tables 1-4 have been made in order to show the varia-
tions of wall shear stress —f”(0) and the heat transfer char-
acteristics at the wall —¢'(0) for different values of involving
parameters. Table 1 gives the variations of n on the wall
shear stress —f”(0) when (M = 12 =0). The magnitude of

Pr=8M=11=1Ec=1,Ry=1 _
12} " —n-00

AR -- n=05
LN —- =10
08 v - p=50
05 '
04}
02
0

Fig. 5. Effects of n on 0 at i, = —0.8 for CST case.

Pr=1,n=521=1 Fc=1Ry=1
. — M=00

120 5% -- M=10
P — M=15
TR - M= 18
08
D
0.6}
04t
0.2 .
0
0 2 4 6 8

Fig. 6. Effects of M on 0 at i, = —0.8 for CST case.

_Pf_'= 1,!1:'5! M=1, EG: 1L Ry=1

12} - — =00
S —-21=10
1HES ™ - 1=20
Y '._ . .1=30
08 .
D 06
04
02
O- -
0

Fig. 7. Effects of A on 0 at i, = —0.8 for CST case.

shear stress increases as n increases and the HAM solution
has good agreement with the numerical solution [9]. Table
2 shows the values of —f"(0) for different values of n, M and
A. The magnitude of the shear stress is increased for large
values of n, M and A. Tables 3 and 4 illustrate the heat



Z. Abbas, T. Hayat | International Journal of Heat and Mass Transfer 51 (2008) 1024-1033 1031

M=05,023105 Eo=05 Ry=1

— =10 |]

08 ——Pr=30
---- Pr=50

06

o
04
02
o0t
0

Fig. 8. Effects of Pr on 0 at i, = —0.8 for CST case.

M=1_5_9-=3,A=1,Pf=f.R¢=1

Pr= 1,)‘ =02 M= 02; K = 1, & = 0,5‘ Rd' =1

1 — p=00 |1
== n=08§
08} ¢, _ - h=10
1 ‘.. - n;-l_s'a
06 \v

04}
02}

0 2 4 6 8 10 12

Fig. 11. Effects of n on 0 at i, = —0.8 for PST case.

Pr=1,1=05n=3K=1EC=05Ry=1

15 ;,.'_. ~— Ec=00 |
P —-= Ee=1.0
125} iy e Ep=20
oo Ee= 3.0
1
® 075
05}
0.25
o
0 2 4 6 8

Fig. 9. Effects of Ec on 0 at i, = —0.8 for CST case.

M=05,n=52=05Pr=1E=05

14} . — M=00
E -- M=10

1.2 g ' - M=158
1. '-;\ ‘.‘ - M=18

Fig. 12. Effects of M on 0 at i, = —0.8 for PST case.

Pr=1,M=05n=3K=1EC=05R=1

is —— Ry=.0.5
08 - Rﬂ =08
---- Rg=12
06
=)
04
02
0

Fig. 10. Effects of R; on 0 at /1, = —0.8 for CST case.

transfer characteristics at the wall —6'(0) when (M = 1=
R;=10) in CST and PST cases, respectively. Table 3 shows
that the magnitude of —0'(0) decreases for large values of n
and increases as Pr increases for (Ec =0 and Ec #0).
The magnitude of —@(0) increases for large values of n

1"\-.. — A=00
A -=-i=10
08 \v4 e A= 15
\\‘,‘- o l=20
06 '
04
02
0 2 9 8 10 12

6
n
Fig. 13. Effects of A on 0 at i, = —0.8 for PST case.

and Pr for (E¢' =0 and Ec¢ #0) in Table 4. From these
tables one can see that the HAM solution has good agree-
ment with the numerical solution [9] for both cases of CST
and PST.
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Fig. 14. Effects of Pr on 0 at i, = —0.8 for PST case.
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Fig. 15. Effects of Ed on 0 at h, = —0.8 for PST case.
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Fig. 16. Effects of R; on 0 at i, = —0.8 for PST case.

7. Conclusions

In this analysis the effects of radiation on MHD flow of
a viscous fluid with heat transfer is investigated. Series
solutions for velocity and temperature fields are first devel-
oped and then discussed for various emerging parameters.
The values of wall shear stress and heat transfer at the wall
are also tabulated. The following observations have been
made from the present analysis.

e The velocity f and temperature 0 increase for large val-
ues of n, M, A, Ec, Ec’ and Ry.

e The temperature 0 decreases as Pr increases.

e The magnitude of the wall shear stress —f”(0) increases
as n, M and / increases.

e The magnitude of —¢'(0) increases for large values of n
and Pr and decreases for large vales of n in GST case.

e Tables 1, 3 and 4 show that HAM solution has good
agreement with the numerical solution [9].
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