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Abstract

This paper deals with the study of the radiation effects on the magnetohydrodynamic (MHD) flow of an incompressible viscous fluid
in a porous space. The flow is induced due to a non-linear stretching sheet. Two cases of heat transfer analysis are discussed. These are: (i)
the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case). By means of
similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations.
The resulting non-linear system has been solved analytically using a very efficient technique namely homotopy analysis method (HAM).
Expressions for velocity and temperature fields are developed in series form. Convergence of the series solution is shown explicitly. The
influence of various pertinent parameters is also seen on the velocity and temperature fields. The tabulated values of the wall shear stress
and the Nusselt number show good agreement with the existing results.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow of a fluid past a stretching surface is encoun-
tered in many technical and industrial applications. Some
of these applications include aerodynamic extrusion of
plastic sheets, the boundary layer along a material handling
conveyers, cooling of an infinite metallic plate in a cooling
bath, the boundary layer along a liquid film in a condensa-
tion process and heat treated material that travel between
feed and wind-up rolls. After the pioneering work of Saki-
adis [1], extensive literature is available on this topic for a
linear stretching sheet. Some very recent contributions in
this direction are made by Sadeghy et al. [2], Ariel et al.
[3], Liao [4], Xu [5] and Cortell [6–8].

In all the above mentioned studies, linear stretching has
been taken into account. The literature on the non-linear
stretching is fairly scarce. Most recently, Cortell [9] dis-
cussed the viscous flow and heat transfer over a non-line-
arly stretching sheet.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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The objective of the present paper is to extend the anal-
ysis of Ref. [9] in four directions (i) to consider a MHD
flow (ii) to analyze the flow in a porous medium (iii) to
include the radiation effects and (iv) to provide analytic
solution to highly non-linear problem. A new developed
powerful technique namely HAM [10,11] has been
employed for the analytic solution. This technique has
already been successfully applied to various problems
[12–32]. Very recently, Allan [33] showed that the Adomian
decomposition method is a special case of the HAM.
Finally, the graphs of velocity and temperature fields are
sketched and variations of sundry parameters are
discussed.
2. Formulation of the problem

Let us consider the steady two-dimensional, incompress-
ible flow of a viscous fluid with heat transfer past a flat sur-
face coinciding with the plane y = 0. The wall is stretched
horizontally by pulling on both sides with equal and oppo-
site forces parallel to the wall keeping the origin fixed. The
fluid is electrically conducting in the presence of a constant
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applied magnetic field B0 in the y-direction. The induced
magnetic field is neglected using small magnetic Reynolds
number assumption [34,35]. The continuity, momentum
and energy equations under boundary layer approxima-
tions become
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in which u and v are the velocity components in the x- and
y-directions, respectively, q is the fluid density, m is the
kinematic viscosity, r is the electrical conductivity, / is
the porosity, k is the permeability of the porous medium,
T is the temperature, cp is the specific heat, k1 is the thermal
conductivity of the fluid and qr is the radiative heat flux.

Using the Rosseland approximation for radiation for an
optically thick layer [36] one can obtain

qr ¼ �
4r�

3k�
oT 4
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; ð4Þ

where r* is the Stefan–Boltzmann constant and k* is the
mean absorption coefficient. We express the term T4 as a
linear function of temperature in a Taylor series about
T1 and neglecting higher terms, therefore we have

T 4 ffi 4T 3
1T � 3T 4

1: ð5Þ
From Eqs. (3)–(5) we can write
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The appropriate boundary conditions are

uwðxÞ ¼ Cxn; v ¼ 0 at y ¼ 0; ð7Þ
u! 0 as y !1; ð8Þ

where C and n are parameters related to the surface stretch-
ing speed.

For temperature we have the following two sets of
boundary conditions.

Case a: Constant surface temperature (CST)

T ¼ T w at y ¼ 0;

T ! T1 as y !1:
ð9Þ

Case b: Prescribed surface temperature (PST)

T ¼ T w ¼ T1 þ AxK
� �

at y ¼ 0;

T ! T1 as y !1;
ð10Þ

where K is the surface temperature parameter.
Defining the following non-dimensionlized quantities:
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continuity Eq. (1) is satisfied automatically and Eqs. (2)
and (7) become

f 000 þ ff 00 � 2n
nþ 1

f 02 �M2f 0 � kf 0 ¼ 0; ð12Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 0ð1Þ ¼ 0: ð13Þ

The shear stress at the stretched surface is
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which in non-dimensional form becomes

sw ¼ Cl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðnþ 1Þ

2m

r
x

3n�1
2 f 00ð0Þ: ð15Þ

For temperature with the help of Eqs. (6) and (9)–(11)
we get:

Case a: Constant surface temperature (CST)
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Case b: Prescribed surface temperature (PST)
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The above equation for K = 2n reduces to
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and the local surface heat flux is
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Here the local Hartmen number M, the local porosity
parameter k, the Prandtl number Pr, the Eckert number
Ec, the radiation parameter Rd and Ec0 are respectively

M2 ¼ 2xn�1rB2
0

Cqðnþ 1Þ ; k ¼ 2xn�1m/
Ckðnþ 1Þ ; Pr ¼ lcp

k1

;

Ec ¼ u2
w

cpðT w � T1Þ
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4r�T 3
1

k�k1

; Ec0 ¼ C2

Acp
:

In the next two sections, we will solve the non-linear sys-
tems consisting of Eqs. (12), (13), (16), (17), (20) and (21)
by HAM.

3. Analytic solution for velocity f(g)

For HAM solution of Eqs. (12) and (13), it is straight-
forward to choose the initial approximation

f0ðgÞ ¼ 1� expð�gÞ ð23Þ
and the auxiliary linear operator

L1ðf Þ ¼ f 000 � f 0; ð24Þ
with the following property

L1½C1 þ C2eg þ C3e�g� ¼ 0; ð25Þ
in which Ci, i = 1 � 3 are arbitrary constants. If p (2 [01])
and �h1 indicate the embedding and non-zero auxiliary
parameters, respectively then we have:

The zeroth-order deformation problem
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The mth-order deformation problem
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vm ¼
0; m 6 1;

1; m > 1:
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Now using Mathematics one can solve Eqs. (28) and
(29) up to first few order of approximations. The forms
of Eqs. (28) and (29) give us the following type of solution
of fm:
fmðgÞ ¼
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The coefficients aq
m;n and bq

m;n, where m P 1, 0 6 n 6

m + 1, 0 6 q 6 m + 1 � n are
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For the detailed procedure of deriving the above rela-
tions the reader is referred to [11]. Using the above recur-
rence formulas, we can calculate all coefficients ak

m;n using
only the first few

a0
0;0 ¼ 1; a1

0;0 ¼ 0; a0
0;1 ¼ �1; ð37Þ

given by the initial guess approximation in Eq. (23).
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The explicit, totally analytic solution is
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4. Analytic solutions for temperature h(g)

Case a: Constant surface temperature (CST)
To seek the analytic solution of Eqs. (16) and
(17) using HAM, we take the initial guess
approximation of h(g) and auxiliary linear oper-
ator as
h0ðgÞ ¼ expð�gÞ; ð39Þ
L2ðf Þ ¼ f 00 � f ; ð40Þ

with

L2½C4eg þ C5e�g� ¼ 0; ð41Þ

in which C4 and C5 are the arbitrary constants. If
�h2 indicates the non-zero auxiliary parameter
then we get:
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and
The mth-order deformation problem
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Using the software Mathematica one can solve Eqs.
(45) and (46) up to first few order of approxima-
tions. We get the following type of solution of hm:
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The coefficients cq
m;n and dq

m;n, where m P 1,
0 6 n 6 m + 1, 0 6 q 6 m + 1 � n are
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Employing the above recurrence formulas, we can
calculate all coefficients bk

m;n using only

b0
0;0 ¼ b1

0;0 ¼ 0; b0
0;1 ¼ 1; ð52Þ

given by the initial guess approximations in Eq.
(39) and thus the temperature field is
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Case b: Prescribed surface temperature (PST)
Employing the same methodology as in case (a), the
solution here is
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Fig. 1. �h-curves for 25th-o
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Putting Pq
m;n instead of Cq

m;n in case (a), we can get the

formulas for the coefficients bk
m;n for case (b).
5. Convergence of the HAM solution

As pointed out by Liao [10], the convergence and rate of
approximation for the HAM solutions, i.e., the series (38),
(53) and (54) are strongly dependent upon �h1 and �h2. In
order to find the admissible values of �h1 and �h2, �h-curves
are plotted for 25th-order of approximations. It is obvious
from Fig. 1 that the range for the admissible values of �h1

and �h2 are �1.05 6 �h1 6 �0.1 and �1.5 6 �h2 6 �0.2. Our
computations show that the series (38), (53) and (54) con-
verge in the whole region of g when �h1 = �0.6 and
�h2 = �0.8.
6. Results and discussion

This section describes the influence of some interesting
parameters on the velocity and temperature fields. In par-
ticular, attention has been focused to the variations of n,
the Hartman number M, porosity parameter k, Prandtl
number Pr, Eckert number Ec, Ec0, and the radiation
parameter Rd on the velocity and temperature fields,
respectively. Moreover, the values of the wall shear stress
�f

00
(0) and the Nusselt number �h

0
(0) are computed in

the Tables 1–4.
In order to see the effects of n, the Hartman number M

and the porosity parameter k on the velocity component
f0, we prepared Figs. 2–4. Fig. 2 depicts the effects of n on
f0. It shows that the velocity is a decreasing function of n.
Figs. 3 and 4 describe the effects of M and k on f0, respec-
tively. It is noted that velocity f0 is an increasing function
of M and k. But this increment, is larger in a porous
medium.
rder approximations.



Table 1
Values of the wall shear stress �f00(0) when M = k = 0

n Cortell [9] HAM solution

0.0 0.627547 0.627547
0.2 0.766758 0.766837
0.5 0.889477 0.889544
0.75 0.953786 0.953956
1.0 1.0 1.0
1.5 1.061587 1.061601
3.0 1.148588 1.148593
7.0 1.216847 1.216851

10.0 1.234875 1.234874
20.0 1.257418 1.257423

100.0 1.276768 1.276773

Table 2
Values of the wall shear stress �f00(0) in the presence of M and k

n M k �f00(0) n M k �f00(0)

0.0 0.5 0.5 1.052407 1.5 0.0 0.5 1.276454
0.2 1.148901 0.2 1.292071
0.5 1.238663 0.5 1.371113
0.75 1.287402 0.7 1.456154
1.0 1.322875 1.0 1.622041
1.5 1.371113 2.0 2.373247
3.0 1.440650 0.5 0.0 1.174068
7.0 1.496283 0.2 1.256655

10.0 1.511120 0.5 1.371113
20.0 1.529766 0.7 1.442332

100.0 1.545838 1.0 1.542966

Table 3
Heat transfer characteristics at the wall �h0(0) for CST case when M = k = R

Cortell [9]

Ec n Pr = 1

0.0 0.2 0.610262
0.5 0.595277
1.5 0.574537
3.0 0.564472

10.0 0.554960

0.1 0.2 0.574985
0.5 0.556623
1.5 0.530966
3.0 0.517977

10.0 0.505121

Table 4
Heat transfer characteristics at the wall �h0(0) for PST case when K = 2n at M

Cortell [9]

Ec0 n Pr = 1

0.0 0.75 1.252672
1.5 1.439393
7.0 1.699298

10.0 1.728934

0.1 0.75 1.219985
1.5 1.405078
7.0 1.662506

10.0 1.691822

Z. Abbas, T. Hayat / International Journal of Heat and Mass Transfer 51 (2008) 1024–1033 1029
Figs. 5–10 are made for the effects of n, M, k, Pr, Ec and
Rd on the temperature field h in CST (Constant surface
temperature) case. Fig. 5 shows that h increases for large
values of n. Figs. 6 and 7 illustrate the effects of M and k
on h. The temperature profile h increases as M and k
increase, respectively. But this increment in case of M is
larger when compared with k. Fig. 8 elucidates the varia-
tion of Pr on temperature h. It is observed that h decreases
as Pr increases. Fig. 9 gives the behavior of Ec on h. It is
noted that h has opposite results when compared with
Fig. 8. Fig. 10 shows the effects of radiation parameter
Rd on h. It is obvious from Fig. 10 that the temperature
h is an increasing function of Rd.

Figs. 11–16 are plotted for the effects of n, M, k, Pr, Ec0

and Rd, on the temperature field h in PST (Prescribed sur-
face temperature) case. Fig. 11 depicts the effects of n on h.
It has the similar results when compared with Fig. 5 in
(CST) case. Figs. 12 and 13 show the influence of M and
k on h, respectively. It is found that these Figs. have the
similar results as in Figs. 6 and 7 for (CST) case. Fig. 14
indicates that h is a decreasing function of Pr. But this dec-
rement is larger when compared with Fig. 8. Fig. 15 shows
that h increases as Ec0 increases. Fig. 16 elucidates the
effects of Rd on h. It is noted that h is increased when Rd

increases. The change in Fig. 16 is larger when compared
with Fig. 10.
d = 0

HAM solution Cortell [9] HAM solution

Pr = 1 Pr = 5 Pr = 5

0.610217 1.607175 1.607925
0.595201 1.586744 1.586833
0.574729 1.557463 1.557672
0.564661 1.542337 1.542145
0.554878 1.528573 1.528857

0.574955 1.474764 1.474203
0.556775 1.436789 1.437242
0.530962 1.381861 1.382003
0.518043 1.352768 1.352548
0.505127 1.324772 1.324943

= k = Rd = 0

HAM solution Cortell [9] HAM solution

Pr = 1 Pr = 5 Pr = 5

1.252700 3.124975 3.124347
1.439375 3.567737 3.567944
1.699318 4.185373 4.185378
1.728952 4.255972 4.255935

1.219940 3.016983 3.016934
1.405184 3.455721 3.455875
1.662599 4.065722 4.065791
1.691812 4.135296 4.135299



Fig. 2. Effects of n on f0 at �h1 = �0.6.

Fig. 3. Effects of M on f0 at �h1 = �0.6.

Fig. 4. Effects of k on f0 at �h1 = �0.6.

Fig. 5. Effects of n on h at �h2 = �0.8 for CST case.

Fig. 6. Effects of M on h at �h2 = �0.8 for CST case.

Fig. 7. Effects of k on h at �h2 = �0.8 for CST case.
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Tables 1–4 have been made in order to show the varia-
tions of wall shear stress �f00(0) and the heat transfer char-
acteristics at the wall �h0(0) for different values of involving
parameters. Table 1 gives the variations of n on the wall
shear stress �f00(0) when (M = k = 0). The magnitude of
shear stress increases as n increases and the HAM solution
has good agreement with the numerical solution [9]. Table
2 shows the values of �f00(0) for different values of n, M and
k. The magnitude of the shear stress is increased for large
values of n, M and k. Tables 3 and 4 illustrate the heat



Fig. 8. Effects of Pr on h at �h2 = �0.8 for CST case.

Fig. 9. Effects of Ec on h at �h2 = �0.8 for CST case.

Fig. 10. Effects of Rd on h at �h2 = �0.8 for CST case.

Fig. 11. Effects of n on h at �h2 = �0.8 for PST case.

Fig. 12. Effects of M on h at �h2 = �0.8 for PST case.

Fig. 13. Effects of k on h at �h2 = �0.8 for PST case.
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transfer characteristics at the wall �h0(0) when (M = k =
Rd = 0) in CST and PST cases, respectively. Table 3 shows
that the magnitude of �h0(0) decreases for large values of n
and increases as Pr increases for (Ec = 0 and Ec 6¼ 0).
The magnitude of �h0(0) increases for large values of n
and Pr for (Ec0 = 0 and Ec0 6¼ 0) in Table 4. From these
tables one can see that the HAM solution has good agree-
ment with the numerical solution [9] for both cases of CST
and PST.



Fig. 15. Effects of Ed on h at �h2 = �0.8 for PST case.

Fig. 14. Effects of Pr on h at �h2 = �0.8 for PST case.

Fig. 16. Effects of Rd on h at �h2 = �0.8 for PST case.
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7. Conclusions

In this analysis the effects of radiation on MHD flow of
a viscous fluid with heat transfer is investigated. Series
solutions for velocity and temperature fields are first devel-
oped and then discussed for various emerging parameters.
The values of wall shear stress and heat transfer at the wall
are also tabulated. The following observations have been
made from the present analysis.
� The velocity f0 and temperature h increase for large val-
ues of n, M, k, Ec, Ec0 and Rd.
� The temperature h decreases as Pr increases.
� The magnitude of the wall shear stress �f00(0) increases

as n, M and k increases.
� The magnitude of �h0(0) increases for large values of n

and Pr and decreases for large vales of n in GST case.
� Tables 1, 3 and 4 show that HAM solution has good

agreement with the numerical solution [9].
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